

DELIVERABLE

Project Acronym: CitySDK

Grant Agreement number:
297220

Project Title:

Smart City Service Development Kit and its application pilots

D3.1 Participation Pilot Application and it’s SDK components

Revision: Final

Authors:

 Hanna Niemi-Hugaerts (Forum Virium Helsinki)
 Henri Salomaa (Sanoma)
 Jaakko Rajaniemi (City of Helsinki)

Project co-funded by the European Commission within the ICT Policy Support Programme
Dissemination Level

P Public x
C Confidential, only for members of the consortium and the Commission Services

Statement of originality:

This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published
material and of the work of others has been made through appropriate
citation, quotation or both.

 2

REVISION HISTORY AND STATEMENT OF ORIGINALITY

 Revision History

Revision Date Author Organisation Description

Statement of originality:

This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published
material and of the work of others has been made through appropriate
citation, quotation or both.

 3

Work Package 3: Smart Participation
D3.1 Participation Pilot Application and it’s SDK components

Hanna Niemi-Hugaerts, Forum Virium Helsinki
Henri Salomaa, Sanoma
Jaakko Rajaniemi, City of Helsinki

 4

1! Purpose of this document!..!5!
2! Introduction to WP3: Smart Participation!..!6!
3! Requirements for Smart Participation!..!8!
3.1! Terminology!...!9!
3.2! Requirements for Smart Participation through User Scenarios!...!9!

3.2.1! Listing request types and definitions!...!10!
3.2.2! Quering several requests!...!12!
3.2.3! Adding a picture and writing a description!...!13!
3.2.4! Submitting the request and following up on it!..!14!

3.3! Future enhancements to the interface!..!15!
4! Standards for Smart Participation!..!16!
4.1! Open311 (Geo Report v2)!..!16!
4.2! Other available standards!...!16!
5! CitySDK Smart Participation interface specification!...!17!
5.1! General!...!17!
5.2! Architecture!...!17!
5.3! Formats!...!18!
5.4! Service Discovery!..!18!
5.5! API!methods!...!20!

5.5.1! GET Service List!..!20!
5.6! GET Service Definition!..!22!

5.6.1! Possible errors!..!24!
5.6.2! POST Service Request!...!26!
5.6.3! GET Service Requests!..!29!
5.6.4! GET Service Request!...!34!
5.6.5! Error messages!..!37!

5.7! New!parameter!definitions!...!38!
5.7.1! Extensions and city specific parameters!...!38!
5.7.2! Status of service requests (detailed_status)!...!39!
5.7.3! Service Objects (service_object_type,service_object_id, service_object_base)!....................!39!
5.7.4! Language support (locale)!...!40!
5.7.5! New query options!..!40!
5.7.6! Media handling!...!41!
5.7.7! Other changes to Open311 v2 specification!...!41!

5.8! Examples on API messages and usage!..!41!
5.8.1! Submitting a service request with an image!..!41!
5.8.2! Service request with image and attributes!...!42!
5.8.3! Quering service request with extensions!..!43!
5.8.4! Listing service definition with language set to Finnish language!..!44!

6! Smart Participation Lead Pilot!..!47!
6.1! Metro.fi!...!48!
6.2! City of Helsinki’s centralized feedback management system!..!50!
6.3! City of Helsinki’s Public Works department!...!51!
6.4! Developer engagement in the Lead Pilot!..!53!
7! Conclusions!...!54!

 5

1 Purpose of this document

This document introduces the possibilities that Participation Lead Pilot Application and it’s
SDK components can offer to developers, municipalities and citizens. Document walks the
reader through the decision-making process behind Smart Participation interface
specification and choices related to it (see Chapters Requirements for Smart Participation
and Standards for Smart Participation). The user perspective is showcased through user
scenarios whilst making a strong connection to the technical requirements.

Smart Participation Work Package’s SDK Component, the issue-reporting interface, is
carefully specified in the section CitySDK Smart Participation interface specification.
In the last part the Lead Pilot is presented providing readers with a concrete pilot case of
Smart Participation interface.

 6

2 Introduction to WP3: Smart Participation

The purpose of the Smart Participation work package is to create an open interface that
acts as an issue-reporting channel between the citizens and the civil servants. The work is
based on the Open311 technology, which is a standardized protocol for location-based
collaborative issue tracking. Further work on the interface was needed, as it didn’t fulfill all
needs of the Lead Pilot and Replication Pilots.
The goal of this work package is to a) provide cities with a specification for issue reporting
interface, b) support developers building apps that make citizen feedback easier and c)
allow citizens to give feedback via commonly used virtual platforms or applications that are
not necessarily owned or maintained by the city. To make the work manageable Smart
Participation focuses mainly on location related issue reports, leaving topics like
participatory budgeting out of scope.

Figure 1: Open311 based Citizens Connect from Boston

Within the Smart Participation domain interfaces are built between the feedback systems
and other platforms to enable a direct flow of citizen feedback to relevant recipients in the
City Hall. For the citizens, different pilots give an opportunity not only to give feedback but
also to follow it by applying commonly used digital services.

 7

Figure 2: Chicago utilisizing Open311 in addition to their other services

The open interface used in the Smart Participation pilot will be shared with the developers.
By using the Open113 -based technology the developers are able to create new
applications that can easily travel across borders.

Figure 3: Screenshot from Open311 based Verbeeter de buurt from Amsterdam

 8

3 Requirements for Smart Participation

The requirements for the Smart Participation interface were collected both from existing
services and through collaboration with active partners in Smart Participation. This resulted
in the Smart Participation requirements document. 1

Figure 4: Screenshots of the requirements document

Partners collaborated on prioritizing the suggested extensions to interface specification
using a collaborative document. 2

In addition to the 7 active city partners and the WP2 leader, also third parties were heard.
These included Finnish app developer group Korja.us, SME running Tassa.fi service and
Dutch GovUnited3.

Local developer community and SMEs have also been heard during the process both in
public developer meet-ups and in other meetings and via social media, eg. CitySDK
Helsinki Facebook page.4

1
https://docs.google.com/a/forumvirium.fi/spreadsheet/ccc?key=0AqvnokBCNLe5dGE5ak5yd21tajNHaTRVSU
0tZ2RROHc#gid=0
2
https://docs.google.com/a/forumvirium.fi/spreadsheet/ccc?key=0AqvnokBCNLe5dFJfNXNKUjlkdHE2S2pJTzN
PZ1M5eGc#gid=0
3 http://www.govunited.nl/
4 https://www.facebook.com/CitySDKHelsinki

 9

3.1 Terminology
Request = issue report or feedback which is sent to the city’s feedback system.

• Example: request on pothole or traffic sign
Request type = different categories of issue reports which city will be addressing
and fixing

• Example: request type on street conditions
City’s feedback system = issue management system used by city personnel

3.2 Requirements for Smart Participation through User Scenarios
In the following pages Smart Participation requirements are introduced from the point of
view of the user but bearing in mind the technical aspects and possibilities of each
requirement. Illustrations are included together with the use cases to show how and what
information travels through the interface from the citizen to the city and vice versa.
First are the scenarios that will be supported by the Lead Pilot and the latter part goes
through requirements that will be supported in the future versions of the interface.

As a starting point we took Tim, who faces something in the urban environment that he
would like the city to fix.

 10

3.2.1 Listing request types and definitions

Listing request types and definitions

Query response can include:

• Names of request types
• Descriptions of request types
• Groups of request types

 11

Listing request types

Query response with attributes can include:

• Names of additional attributes
• Descriptions data types and possible values

 12

3.2.2 Quering several requests

5

Smart Participation interface needs to support quering of submitted issue reports. The
interface allows queries based on

• Submission date and time (start and endtime)
• Location (lat/long+radius)
• Status Service request type

Interface supports City’s response, which can include:

• Description
• Location
• State
• Response text
• Submission date and time
• Update date and time
• Expected date and time when fixed
• Government agency responsible for the service request
• Service request type
• Photo

5 Screenshot of Citizens connect Boston

 13

3.2.3 Adding a picture and writing a description

Smart Participation interface sets constraints to the issue reporting interface and form for
some parts. Request types (in the image “Category”) are fetched from the interface and are
defined separately for each interface instance by the interface provider.
Content required from the user submitting the request often includes (mandatory ones
marked with *):

• Description*
• Location
• Request type*
• Contact info*
• Photo

 14

3.2.4 Submitting the request and following up on it

The Smart Participation interface allows users to submit their issue reports in the given
format. After issue report is submitted, the interface provides the user with:

• Request ID
• Textual response

With request IDs users are able to follow the status of their issue report (request). User is
also able to make queries using the ID. The response to this query can include:

• Description
• Location
• State
• Response text
• Submission date and time
• Update date and time
• Expected date and time when fixed
• Government agency responsible for the request
• Request type
• Photo

 15

3.3 Future enhancements to the interface
CitySDK project partners voted on the new features, which they would like to see
implemented in the service. Defining solutions for this is a work in progress and will be lead
by the Replication Pilot in need for the feature in question.

Mobility of the user between cities
It should be possible that the user of one application can use the same application when
moving to other city. This is especially useful on metropolitan areas where people move a
lot between cities. Users don’t even always know where they are at the point they reporting
an issue and using the applications. No solution is yet defined, but there are efforts like
GeoWeb DNS, which may provide the solution.

Commenting on an issue
During the requirement specification work it became clear that for some pilots comments or
other updates are seen crucial for enabling collaboration around issue reporting without
generating duplicate reports. Handling comments would require new method for sending
comments and linking them to service requests.

Giving votes for issues user finds important
User should be able to vote for issues that he/she finds important and would like the city to
fix. Issues like identifying users and checking whether they have already voted for each
service requests should be addressed.

Notification of updates on request
The interface to city's system should be defined in such a way that clients can subscribe to
changes of requests via the interface. For example, when the status, response text, agency
handling or other important value of the request changes. There are alternative ways to
achieve this requirement like updating status changes via e-mail address if the user has
provided it. These alternatives do not require complex interface functionality.

Editing and removing submitted requests
Sender of request should be able to edit and remove requests after they have been sent to
service.

More flebility on defining locations
It is now possible to have only point locations related to requests. It should be possible to
have more flexibility defining location of the requests like line and polygons.

Integrating the feedback channels to users’ city accounts
User should be able to submit request and be able to authenticate with an account provided
by the city.

 16

4 Standards for Smart Participation

4.1 Open311 (Geo Report v2)
GeoReport version 2 or better known as Open311 specification is mostly used in cities in
USA. Open311 standard is especially used for reporting issues to city’s feedback systems.
It is implemented by 35 cities so far. The latest specification version 2 was released 2011.

Reasons for choosing Open311
The number of implementations and cities involved has shown that the interface is mature.
There are several service providers and applications, which guarantee that there are
alternatives for cities to choose from if they plan to have Open311 endpoint. Existing open
source libraries and developer community is also a good building ground for new solutions
and innovations.

Possible risks related to Open311
CitySDK members try collaborate and develop the interface together with the Open311
community. When more parties are involved in developing an interface standard, it may
become slower. It’s not always clear how the rough consensus can work and can achieve
goals especially in a community, which lacks clear model of operation and leadership.
4.2 Other available standards
There are other standards for reporting problems and tracking them, e.g., Trouble Ticket
standard. These can be quite general standards and therefore more complex than
Open311. There are also open source reporting platforms like Ushadidi platform, which are
used on similar things like reporting issues on a certain location. These are mostly focusing
on the platform part and not so much on defining an interface to others to implement on.

 17

5 CitySDK Smart Participation interface specification
5.1 General
This document defines the interface for CitySDK Smart Participation Work Package WP3.
The interface is specified based on commonly used GeoReporting version 2, which is better
known as Open311 specification [http://open311.org/]. The interface is designed in such a
way that any GeoReporting version 2 compatible client is able to use the interface.

In addition to the version standard new fields have been added to API methods which have
been indicated in specification CitySDK specific. CitySDK is collaborating with Open311
community with the aim to identify if the currently non-standard features could be included
into the future version of the Open311 standard.
5.2 Architecture
Each API endpoint may be connected to several jurisdictions. In order to distinguish
multiple jurisdictions within one API endpoint, "jurisdiction_id" is a unique identifier included
into every request.

Image 1. Overall architecture

It has been recommended that the "jurisdiction_id“ is the jurisdiction's main website root
URL without the www. For Helsinki, the jurisdiction_id is “hel.fi”. Implementations can ignore
this parameter and treat it as an "Optional Argument" if the implementation only serves one
jurisdiction.

In a typical scenario each jurisdiction, i.e. city, has one API endpoint, which provides all
services.

Services provided by the interface are:

1. Listing of service request types and definitions of the meta information i.e. additional
attributes

2. Submitting service requests6
3. Quering individual or multiple service requests and their descriptions and status

6 Service request is an issue such as pothole which is reported to the municipality

 18

5.3 Formats
XML is a required format. JSON can be also provided the API provider. The output formats
supported by the provider are indicated through the Service Discovery formats field for the
API endpoint being used.
5.4 Service Discovery
Service Discovery as defined in Open311 (http://wiki.open311.org/Service_Discovery
) contains following required fields:

• changeset - String - Sortable field that specifies the last time this document was
updated.

• contact - String - Human readable information on how to get more information on
this provider.

• key_service - String - Human readable information on how to get an API key.
• endpoints - Array - Data structure holding the endpoints supported by this provider
• endpoints.endpoint - Hash - Data structure holding the metadata for each endpoint

supported by this provider
• endpoints.endpoint.specification - String - The token of the service specification

that is supported. This token will be defined by each spec. In general the format is a
URL that identifies the specification and version number much like an XMLNS
declaration. (eg http://wiki.open311.org/GeoReport_v2)

• endpoints.endpoint.url - String - URL of the endpoint provider
• endpoints.endpoint.changeset - String - Sortable field that specifies the last time

this document was updated.
• endpoints.endpoint.type - String - Either "production" or "test" defines whether the

information is live and will be acted upon.
• endpoints.endpoint.formats - Array - Data structure of supported MIME types.
• endpoints.endpoint.formats.format - String - Supported MIME type for this

endpoint.

In addition to this, new fields for language support is added:

• endpoints.endpoint.locales - Array - Data structure of supported language.
• endpoints.endpoint.locales.locale - String - Supported language as locale.

Example

<?xml version="1.0" encoding="UTF-8"?>
<discovery>
 <changeset>2011-02-03 14:18</changeset>
 <contact>Email or call for assistance api@mycity.eu</contact>
 <key_service>Request a key: http://api.mycity.eu/api_key/request</key_service>
 <endpoints>
 <endpoint>
 <specification>http://wiki.open311.org/GeoReport_v2</specification>
 <url>http://open311.mycity.gov/v2</url>
 <changeset>2010-11-23 09:01</changeset>
 <type>production</type>
 <formats>
 <format>text/xml</format>
 </formats>

 19

 <locales>
 <locale>fi_FI</format>

 <locale>sv_FI</format>
 <locale>sv_SE</format>
 <locale>en_US</format>
 </locales>

 </endpoint>
 <endpoints>
</discovery>

 20

5.5 API methods

5.5.1 GET Service List

Purpose Provides a list of acceptable service request types and their associated
service codes. These request types can be unique to the
city/jurisdiction.

URL https://[API endpoint]/services.[format]
Sample URL https://api.hel.fi/services.xml
Formats XML and JSON
Requires API
key

No

HTTP Method GET

Required Parameters

Parameter
name

Description Requi
red

Notes

jurisdiction_id Unique id for the jurisdiction,
i.e. city. For example
jurisdiction_id for Helsinki is
“hel.fi”.

No This is only required if the endpoint
serves multiple jurisdictions.

locale

CitySDK
specific

Preferred language No Locales can be, for example, fi_FI,
or en_US. Default values depends
on the endpoint. See also chapter
on Language support.

Response

Parameter
name

Description Requi
red

Notes

service_code The unique identifier for the service
request type

Yes

service_name The human readable name of the service
request type

Yes

description A brief description of the service request
type.

Yes

metadata Determines whether their are additional
form fields for this service type.

• true: This service request type
requires additional metadata so
the client will need to make a call
to the Service Definition method.

• false: No additional information is
required and a call to the Service
Definition method is not needed.

Yes

type • realtime: The service request ID
will be returned immediately after

Yes

 21

the service request is submitted.
• batch: A token will be returned

immediately after the service
request is submitted. This token
can then be later used to return
the service request ID.

• blackbox: No service request ID
will be returned after the service
request is submitted

keywords A comma separated list of tags or
keywords to help users identify the
request type. This can provide synonyms
of the service_name and group.

Yes

group A category to group this service type
within. This provides a way to group
several service request types under one
category such as "sanitation"

Yes

Possible errors
The numbers represent the HTTP status code returned for each error type:

• 404 - service_code or jurisdiction_id was not found (specified in error response)
• 400 - service_code or jurisdiction_id was not provided (specified in error response)
• 400 - General Service Error (Any failure during create request processing, eg CRM

is down. Client will need to notify us)

Example Request

https://api.hel.fi/services.xml

Example Response

<?xml version="1.0" encoding="utf-8"?>
<services>
 <service>
 <service_code>001</service_code>
 <service_name>Street lights</service_name>
 <description> Report if street lights are out of order.</description>
 <metadata>false</metadata>
 <type>realtime</type>
 <keywords>streetlight</keywords>
 <group>Streets and Sanitation</group>
 </service>
 <service>
 <service_code>002</service_code>
 <service_name>Potholes in street</service_name>
 <description> Report Potholes in public streets</description>
 <metadata>false</metadata>
 <type>realtime</type>

 22

 <keywords>pothole</keywords>
 <group>Transportation</group>
 </service>
 <service>
 <service_code>003</service_code>
 <service_name>General feedback</service_name>
 <description>Give general feedback</description>
 <metadata>true</metadata>
 <type>realtime</type>
 <keywords>general, feedback</keywords>
 <group>General</group>
 </service>
</services>

5.6 GET Service Definition
Purpose Define attributes associated with a service code. These attributes can be

unique to the city/jurisdiction.
URL https://[API endpoint]/services/[service_code].[format]
Sample URL https://api.hel.fi/services/033.xml
Formats XML and JSON
Requires API
key

No

HTTP Method GET

Required Parameters

Parameter
name

Description Requ
ired

Notes

jurisdiction_id Unique id for the jurisdiction, i.e.
city. For example jurisdiction_id for
Helsinki is “hel.fi”.

No This is only required if the
endpoint serves multiple
jurisdictions.

service_code The unique identifier for the service
request type.

Yes The service_code is specified in
the main URL path rather than an
added query string parameter.

locale

CitySDK
specific

Preferred language No Locales can be, for example,
fi_FI, sv_SE, en_US tai en_GB.
Default values depends on the
endpoint. See also Language
support.

Response

Parameter
name

Description Requi
red

Notes

service_definition ↴
service_code Returns the service_code

associated with the definition, the
same one submitted for this call.

Yes

attributes ⇊

 23

attribute ↴
variable • true denotes that user input

is needed
• false means the attribute is

only used to present
information to the user
within the description field

Yes

code A unique identifier for the attribute Yes
datatype Denotes the type of field used for

user input.

• string: A string of
characters without line
breaks. Represented in an
HTML from using an
<input> tag

• number: A numeric value.
Represented in an HTML
from using an <input> tag

• datetime: The input
generated must be able to
transform into a valid ISO
8601 date. Represented in
an HTML from using
<input> tags

• text: A string of characters
that may contain line
breaks. Represented in an
HTML from using an
<textarea> tag

• singlevaluelist: A set of
predefined values (specified
in this response) where only
one value may be selected.
Represented in an HTML
from using the <select> and
<option> tags

• multivaluelist: A set of
predefined values (specified
in this response) where
several values may be
selected. Represented in an
HTML from using the
<select multiple="multiple">
and <option> tags

Yes

required • true means that the value is
required to submit service
request

• false means that the value

Yes

 24

not required.
data_descripti
on

A description of the datatype which
helps the user provide their input

Yes

order The sort order that the attributes
will be presented to the user. 1 is
shown first in the list.

No

description An description of the attribute field
with instructions for the user to find
and identify the requested
information

Yes

values ⇊
value ↴
key The unique identifier associated

with an option for singlevaluelist or
multivaluelist. This is analogous to
the value attribute in an html option
tag.

Yes

name The human readable title of an
option for singlevaluelist or
multivaluelist. This is analogous to
the innerhtml text node of an html
option tag.

Yes

5.6.1 Possible errors

The numbers represent the HTTP status code returned for each error type:

• 404 - service_code or jurisdiction_id was not found (specified in error response)
• 400 - service_code or jurisdiction_id was not provided (specified in error response)
• 400 - General Service Error (Any failure during create request processing, eg CRM

is down. Client will need to notify us)

 25

Example Request

https://api.hel.fi/services/003.xml

Example Response

<service_definition>
 <service_code>003</service_code>
 <attributes>
 <attribute>
 <variable>true</variable>
 <code>service_request_type</code>
 <datatype>singlevaluelist</datatype>
 <required>true</required>
 <datatype_description></datatype_description>
 <order>1</order>
 <description>Feedback type</description>
 <values>
 <value>
 <key>IDEA</key>
 <name>Idea</name>
 </value>
 <value>
 <key>THANK</key>
 <name>Positive feedback</name>
 </value>
 <value>
 <key>BLAME</key>
 <name>Negative feedback</name>
 </value>
 <value>
 <key>QUESTION</key>
 <name>Question</name>
 </value>
 <value>
 <key>OTHER</key>
 <name>Other</name>
 </value>

 </values>
 </attribute>
 <attribute>
 <variable>true</variable>
 <code>title</code>
 <datatype>string</datatype>
 <required>false</required>
 <datatype_description></datatype_description>
 <order>2</order>
 <description>Feedback title</description>
 </attribute>
 </attributes>
</service_definition>

 26

5.6.2 POST Service Request

Purpose Create service requests
URL https://[API endpoint]/requests.[format]
Sample URL https://api.hel.fi/requests.json
Posting
Formats

Content-Type: application/x-www-form-urlencoded tai multipart/form-data
(ks. media parametri)

Formats XML and JSON
Requires API
key

Yes

HTTP Method POST

Required Parameters

Parameter
name

Description Req
uire
d

Notes

api_key Yes
jurisdiction_id Unique id for the jurisdiction, i.e.

city. For example jurisdiction_id
for Helsinki is “hel.fi”.

No This is only required if the
endpoint serves multiple
jurisdictions.

locale

CitySDK
specific

Preferred language No Locales can be, for example,
fi_FI, sv_SE, en_US tai
en_GB. Default values
depends on the endpoint. See
also Language support.

service_code The unique identifier for the
service request type

Yes

attribute An array of key/value responses
based on Service Definitions.

Yes Yes, if defined in the Service
Definitions

lat

CitySDK
specific

Latitude using the (WGS84)
projection.

No It is not mandatory to have
location, which differs from
Open v2. Each city must
define in their specification if it
is possible to send request
without for certain service
request types (see Extensions
and city specific parameters).

long

CitySDK
specific

Longitude using the (WGS84)
projection.

No It is not mandatory to have
location, which differs from
Open v2.

address_strin
g

Human entered address or
description of location.

No

address_id he internal address ID used by a
jurisdiction's master address
repository or other addressing
system.

No

email The email address of the person No

 27

submitting the request
device_id The unique device ID of the

device submitting the request.
This is usually only used for
mobile devices.

No

account_id The unique ID for the user
account of the person submitting
the request

No

first_name The given name of the person
submitting the request

No

last_name The family name of the person
submitting the request

No

phone The phone number of the person
submitting the request

No

description A full description of the request
or report being submitted.

No This may contain line breaks,
but not html or code.
Otherwise, this is free form
text limited to 4,000
characters.

media_url A URL to media associated with
the request, e.g. an image.

No

media

CitySDK
specific

An array of file uploads No A client may POST multiple
files as multipart/form-data.
This is the equivalent of having
multiple <input type="file"
name="media[]" /> inputs.
Subsequent calls for GET
Service Requests should
return the URL for this file via
the media_urls field. This
means that a client can not
simultaneously post a URL for
media_url and post files via
media. If this is done, the files
uploaded via the media field
will take precedence and be
returned as URLs in the
media_url field. This planned
for Open311 version 2.1.

service_objec
t_type

CitySDK
specific

Describes the point of interest
reference which is used for
identifying the request object.

No See Chapter Service Objects.

service_objec
t_id

CitySDK
specific

Describes the ID of the service
object

No See Chapter Service Objects.
If service_object_id is included
in the request, then
service_object_type must be
included.

 28

Response

Parameter
name

Description Req
uired

Notes

service_reque
st_id

The unique ID of the service
request created.

No This should not be returned if
token is returned.

token_id If returned, use this to call GET
request_id from a token.

No This should not be returned if
service_request_id is returned

service_notice Information about the action
expected to fulfill the request or
otherwise address the information
reported.

No

account_id The unique ID for the user account
of the person submitting the
request.

No

Possible errors
The numbers represent the HTTP status code returned for each error type:

• 404 - service_code or jurisdiction_id was not found (specified in error response)
• 400 - service_code or jurisdiction_id was not provided (specified in error response)
• 400 - General Service Error (Any failure during create request processing, eg CRM

is down. Client will need to notify us)

Example Request

POST /dev/v2/requests.xml
Host: api.hel.fi
Content-Type: application/x-www-form-urlencoded; charset=utf-8

api_key=xyz&service_code=001&lat=37.76524078&long=122.4212043&address_string=1234+5th+street&em
ail=smit333%40sfgov.edu&device_id=tt222111&account_id=123456&first_name=john&last_name=smith&pho
ne=111111111&description=A+large+sinkhole+is+destroying+the+street&media_url=http%3A%2F%2Ffarm3.
static.flickr.com%2F2002%2F2212426634_5ed477a060.jpg

Example Response

<?xml version="1.0" encoding="utf-8"?>
<service_requests>
 <request>
 <service_request_id>293944</service_request_id>
 <service_notice>Thank you for your issue-report!</service_notice>
 <account_id/>
 </request>

service_objec
t_base
 CitySDK
specific

Describes the endpoint base of
the service object data source.

No See Chapter Service Objects.
If service object is defined
then, then it is recommended
the service_object_base is
included in the message.

 29

</service_requests>

5.6.3 GET Service Requests

Purpose Query the current status of multiple requests.
URL https://[API endpoint]/requests.[format]
Sample URL https://api.hel.fi/requests.xml?start_date=2010-05-

24T00:00:00Z&end_date=2010-06-24T00:00:00Z&status=open
Formats XML and JSON
Requires API key No
HTTP Method GET

Required Parameters

Parameter
name

Description Req
uired

Notes

jurisdiction_id Unique id for the jurisdiction, i.e.
city. For example jurisdiction_id for
Helsinki is “hel.fi”.

No This is only required if the
endpoint serves multiple
jurisdictions.

locale

CitySDK
specific

Preferred language No Locales can be, for example,
fi_FI, sv_SE, en_US tai en_GB.
Default values depends on the
endpoint. See also Language
support.

service_reque
st_id

To call multiple Service Requests
at once, multiple
service_request_id can be
declared; comma delimited.

No This overrides all other
arguments.

service_code Specify the service type by calling
the unique ID of the service_code.

No This defaults to all service codes
when not declared; can be
declared multiple times, comma
delimited

start_date Earliest requested_datetime to
include in search. When provided
with end_date, allows one to
search for requests which have a
requested_datetime that matches
a given range, but may not span
more than 90 days..

No Must use w3 format, e.g 2010-
01-01T00:00:00Z.

end_date Latest requested_datetime to
include in search. When provided
with start_date, allows one to
search for requests which have a
requested_datetime that matches

No Must use w3 format, e.g 2010-
01-01T00:00:00Z.

 30

a given range, but may not span
more than 90 days.

updated_after

CitySDK
specific

Earliest updated_datetime to
include in search. Allows one to
search for requests which have an
updated_datetime between the
updated_after time and
updated_before time (or now). This
is useful for downloading a
changeset that includes changes
to older requests or to just query
very recent changes.

 Must use w3 format, e.g 2010-
01-01T00:00:00Z.

updated_befor
e

CitySDK
specific

Latest updated_datetime to include
in search. Allows one to search for
requests which have an
updated_datetime between the
updated_after time and the
updated_before time. This is useful
for downloading a changeset that
includes changes to older requests
or to just query very recent
changes.

 When not specified
(updated_after is used without
updated_before) then
updated_before is assumed to
be now. Must use w3 format, eg
2010-01-01T00:00:00Z.

status Allows one to search for requests
which have a specific status. This
defaults to all statuses; can be
declared multiple times, comma
delimited.

No

extensions

CitySDK
specific

The endpoint provides
supplemental details about service
requests that are in addition to the
ones described in the standard
specification. These data are
nested in the 'extended_attributes'
field in the Service Request
response. In order to retrieve the
new supplemental details, add the
query parameter “extensions=true”
to the request

No

page_size

CitySDK
specific

Controls the maximum amount of
results a single call will return. The
default value is 50. The maximum
value is 500.

No

page

CitySDK
specific

For calls that logically include more
records than the page size, the
page parameter can be use to
page through the results. Use in
combination with page_size and
with multiple calls to download all
data in a logical set of records.

No

lat Defines latitude of the location No When search is performed on

 31

CitySDK
specific

where search is performed. certain location then both lat
and long must be present and
radius is optional.

long

CitySDK
specific

Defines longitude of the location
where search is performed.

No When search is performed on
certain location then at least lat
and long must be present and
radius is optional.

radius

CitySDK
specific

Defines radius of the location
where search is performed.

No radius is optional if lat and long
parameters are given. However,
it is recommended that value is
give to radiusgiven, if not then
server sends

service_object
_type

CitySDK
specific

Describes the point of interest
reference which is used for
identifying the request object.

No See Chapter Service Objects.

service_object
_id

CitySDK
specific

Describes the ID of the service
object

No

See Chapter Service Objects. If
service_object_id is included in
the request, then
service_object_type must be
included.

service_object
_base
CitySDK
specific

Describes the endpoint base of the
service object data source.

No See Chapter Service Objects. If
service object is defined then,
then it is recommended the
service_object_base is included
in the response.

Response

Parameter
name

Description Requi
red

Notes

service_reque
st_id

The unique ID of the service
request created.

Yes

status The current status of the service
request.

• open: it has been
reported.

• closed: it has been
resolved.

Yes

status_notes Explanation of why status was
changed to current state or
more details on current status
than conveyed with status
alone.

No

service_name The human readable name of Yes

 32

the service request type
service_code The unique identifier for the

service request type
Yes

description A full description of the request
or report submitted.

Yes This may contain line breaks,
but not html or code.
Otherwise, this is free form
text limited to 4,000
characters.

agency_respo
nsible

The agency responsible for
fulfilling or otherwise addressing
the service request.

No

service_notic
e

Information about the action
expected to fulfill the request or
otherwise address the
information reported.

No

requested_da
tetime

The date and time when the
service request was made.

Yes Returned in w3 format, eg
2010-01-01T00:00:00Z

updated_date
time

The date and time when the
service request was last
modified. For requests with
status=closed, this will be the
date the request was closed.

No Returned in w3 format, eg
2010-01-01T00:00:00Z

expected_dat
etime

The date and time when the
service request can be
expected to be fulfilled. This
may be based on a service-
specific service level
agreement.

No Returned in w3 format, eg
2010-01-01T00:00:00Z

May not be returned

address Human readable address or
description of location.

No

address_id The internal address ID used by
a jurisdictions master address
repository or other addressing
system.

No

zipcode The postal code for the location
of the service request.

No

lat

CitySDK
specific

latitude using the (WGS84)
projection.

No It is not mandatory to have
location, which differs from
Open v2.

long

CitySDK
specific

longitude using the (WGS84)
projection.

No It is not mandatory to have
location, which differs from
Open v2

media_url

CitySDK
specific

A URL to media associated with
the request, eg an image.

No May contain more than one of
these elements

service_objec
t_type

Nested in extended_attributes
field

No See Chapter Service Objects.

 33

CitySDK
specific

(extended_attributes.service_ob
ject_type
). Describes the point of interest
reference which is used for
identifying the request object.

service_objec
t_id

CitySDK
specific

Nested in extended_attributes
field (extended_attributes
service_object_id). Describes
the ID of the service object.

No See Chapter Service Objects.
If service_object_id is included
in the response, then
service_object_type must be
included.

service_objec
t_base

CitySDK
specific

Describes the endpoint base of
the service object data source.

No See Chapter Service Objects.
If service object is defined
then, then it is recommended
the service_object_base is
included in the response.

Response Volume

Default query limit is a span of 90 days or first 1000 requests returned, whichever is
smallest.

Possible errors
The numbers represent the HTTP status code returned for each error type:

• 404 - service_code or jurisdiction_id was not found (specified in error response)
• 400 - service_code or jurisdiction_id was not provided (specified in error response)
• 400 - General Service Error (Any failure during create request processing, eg CRM

is down. Client will need to notify us)

Example Request

https://api.hel.fi/dev/v2/requests.xml?start_date=2012-05-24T00:00:00Z&end_date=2012-06-
24T00:00:00Z&status=open,close

Example Response

<?xml version="1.0" encoding="utf-8"?>
<service_requests>
 <request>
 <service_request_id>638344</service_request_id>
 <status>open</status>
 <status_notes>IN_PROCESS</status_notes>
 <service_name>Vandalism</service_name>
 <service_code>001</service_code>
 <description>Trash bin broken.</description>
 <agency_responsible>Public Works Department</agency_responsible>
 <service_notice>Repair has been ordered.</service_notice>
 <requested_datetime>2012-05-26T06:37:38-08:00</requested_datetime>

 34

 <updated_datetime>2012-05-26T06:37:38-08:00</updated_datetime>
 <expected_datetime>2012-05-28T06:37:38-08:00</expected_datetime>
 <address>Aleksanterinkatu 16-18</address>
 <zipcode>00100</zipcode>
 <lat>60.168569</lat>
 <long24.950627</long>
 <media_url>http://images.hel.fi/requests/media/638344.jpg</media_url>
 </request>
 <request>
 <service_request_id>638349</service_request_id>
 <status>open</status>
 <status_notes>RECEIVED</status_notes>
 <service_name>Street conditions</service_name>
 <service_code>003</service_code>
 <description>There is a pothole.</description>
 <agency_responsible>Public Works Department</agency_responsible>
 <service_notice></service_notice>
 <requested_datetime>2012-06-12T06:37:38-08:00</requested_datetime>
 <updated_datetime>2012-06-12T06:37:38-08:00</updated_datetime>
 <expected_datetime>2012-06-12T06:37:38-08:00</expected_datetime>
 <address>Unioninkatu 8</address>
 <zipcode>00100</zipcode>
 <lat>60.168569</lat>
 <long>24.950627</long>
 <media_url>http://images.hel.fi/requests/media/638349.jpg</media_url>
 </request>
</service_requests>

5.6.4 GET Service Request

Purpose Query the current status of an individual request.
URL https://[API endpoint]/requests/[service_request_id].[format]
Sample URL https://api.hel.fi/requests/123456.xml?jurisdiction_id=hel.fi
Formats XML and JSON
Requires API
key

No

HTTP Method GET

Required Parameters

Parameter name Description Requi

red
Notes

jurisdiction_id Unique id for the jurisdiction,
i.e. city. For example
jurisdiction_id for Helsinki is
“hel.fi”.

No This is only required if the
endpoint serves multiple
jurisdictions.

service_request_id Yes The service_request_id is
specified in the main URL
path rather than an added
query string parameter.

locale

Preferred language No Locales can be, for
example, fi_FI, sv_SE,

 35

CitySDK specific en_US tai en_GB. Default
values depends on the
endpoint. See also
Language support.

extensions

CitySDK specific

The endpoint provides
supplemental details about
service requests that are in
addition to the ones described
in the standard specification.
These data are nested in the
'extended_attributes' field in the
Service Request response. In
order to retrieve the new
supplemental details, add the
query parameter
“extensions=true” to any Open
311 API request.

No Options: true, false.

Response

Parameter name Description Requi

red
Notes

service_request_id Yes
status The current status of the

service request.
• open: it has been

reported.
• closed: it has been

resolved.

Yes See also Status of service
request

status_notes

Explanation of why status was
changed to current state or
more details on current status
than conveyed with status
alone.

Yes

service_name The human readable name of
the service request type

Yes

service_code The unique identifier for the
service request type

Yes

description A full description of the request
or report submitted.

Yes This may contain line
breaks, but not html or code.
Otherwise, this is free form
text limited to 4,000
characters.

agency_responsible The agency responsible for
fulfilling or otherwise
addressing the service request.

Yes

service_notice Information about the action
expected to fulfill the request or
otherwise address the

Yes

 36

information reported.
requested_datetime The date and time when the

service request was made.
Yes Returned in w3 format, eg

2010-01-01T00:00:00Z
updated_datetime The date and time when the

service request was last
modified. For requests with
status=closed, this will be the
date the request was closed.

Yes Returned in w3 format, eg
2010-01-01T00:00:00Z

expected_datetime The date and time when the
service request can be
expected to be fulfilled. This
may be based on a service-
specific service level
agreement.

No Returned in w3 format, eg
2010-01-01T00:00:00Z

May not be returned

address Human readable address or
description of location.

No

address_id The internal address ID used
by a jurisdictions master
address repository or other
addressing system.

No

zipcode The postal code for the location
of the service request.

No

lat latitude using the (WGS84)
projection.

Yes

long longitude using the (WGS84)
projection.

Yes

media_url A URL to media associated
with the request, eg an image.

No May contain more than one
of these elements

service_object_type

CitySDK specific

Nested in extended_attributes
field
(extended_attributes.service_o
bject_type
). Describes the object or point
of interest reference which is
used e.g.
”http://www.hel.fi/palvelukartta
ws/rest/ver2_en.html”

No See Chapter Service
Objects.

service_object_id

CitySDK specific

Nested in extended_attributes
field
(extended_attributes.service_o
bject_id) describes the ID of
the object e.g. public toiled in
Helsinki Esplanade park ID =
10844

No If service_object_id is
included, then
service_object_type must be
also included.

service_object_base

CitySDK specific

Describes the endpoint base of
the service object data source.

No See Chapter Service
Objects. If service object is
defined then, then it is
recommended the
service_object_base is
included in the response.

 37

detailed_status

CitySDK specific

Nested in extended_attributes
field (extended_attributes.
detailed_status) describes
detailed status of the request
status.

No This can contain multiple
status values; comma
delimited. See more on
Status of service requests.

Possible errors
The numbers represent the HTTP status code returned for each error type:

• 404 - service_code or jurisdiction_id was not found (specified in error response)
• 400 - service_code or jurisdiction_id was not provided (specified in error response)
• 400 - General Service Error (Any failure during create request processing, eg CRM

is down. Client will need to notify us)

Example Request

https://api.city.gov/dev/v2/requests/638344.xml

Example Response

<?xml version="1.0" encoding="utf-8"?>
<service_requests>
 <request>
 <service_request_id>638344</service_request_id>
 <status>closed</status>
 <status_notes>Duplicate request.</status_notes>
 <service_name>Sidewalk and Curb Issues</service_name>
 <service_code>001</service_code>
 <description></description>
 <agency_responsible></agency_responsible>
 <service_notice></service_notice>
 <requested_datetime>2010-04-14T06:37:38-08:00</requested_datetime>
 <updated_datetime>2010-04-14T06:37:38-08:00</updated_datetime>
 <expected_datetime>2010-04-15T06:37:38-08:00</expected_datetime>
 <address>8TH AVE and JUDAH ST</address>
 <zipcode>94122</zipcode>
 <lat>60.168569</lat>
 <long>24.950627</long>
 <media_url>http://images.hel.fi/requests/media/638344.jpg</media_url>
 </request>
</service_requests>

5.6.5 Error messages

Parameter
name

Description Requi
red

Notes

code The error code representing the type Yes

 38

of error. In most cases, this should
match the HTTP status code returned
in the HTTP header.

description A human readable description of the
error that occurred. This is meant to
be seen by the user.

Yes

General error:

• 403 – Missing or Invalid API Key (specify in error message)
• 400 – The URL request is invalid or open311 service is not running or reachable.

Client should notify us after checking URL

Example Error

HTTP/1.1 403 Forbidden

<?xml version="1.0" encoding="utf-8"?>
<errors>
 <error>
 <code>403</code>
 <description>Missing API key, the request cannot be stored.</description>
 </error>
</errors>

5.7 New parameter definitions

5.7.1 Extensions and city specific parameters

The endpoint may provide supplemental details about service requests that are in addition
to the ones described in the Open311 version 2. These parameters are nested in the
'extended_attributes' field in the service request response. In order to retrieve the new
supplemental details, the query parameter “extensions=true” must be set on the request.

This specification specifies new parameters service_object_type and service_object_type in
chapter Service objects and detailed_status in chapter Status of service requests, which
may be provided by the endpoint. These parameters are returned only if extensions is set
“true” and nested in the 'extended_attributes' field.

Cities can specify other parameters using the extensions mechanism. These parameters
are not part of this specification, but city’s own specification. For example in Helsinki these
parameters are likely specified in addition.

• attributes defined for some service request types may be returned in response. For
example service_request_type,title attributes

• service_request_url - URL address of the service request in city’s web page, e.g.
”http://hel.fi/request/1234567”

• external_url – URL address of the service request in the external service if it exists,
e.g. ” http://metro.fi/feedback/0987654”

The extension parameter is already used in Chicago API endpoint.

 39

5.7.2 Status of service requests (detailed_status)

The status of each service is transferred in status parameter. Status can have only values
“open” or “closed”. If more detailed level of status information needs to be transferred
detailed_status parameter is defined via the extension mechanism (see more Extensions).

For interoperability purpose set of detailed status values are specified:

• RECEIVED – service request is received but nothing is done it. Status field value is
open.

• IN_PROCESS - service request is received and its handling has been started. Status
field value is open.

• PROCESSED - service request has been resolved. Status field value is closed.
• ARCHIVED - service request has been resolved and archived. Status field value is

closed.
• REJECTED -service request has been rejected. Status field value is closed.

Different city systems may be able to provide more detailed and city specific status values.
Therefore, detailed_status extension parameter or status_notes field can have multiple
status values, which are comma separated. For example, detailed_status is
“IN_PROCESS,PUBLIC_WORKS_HANDLING”.

In Helsinki pilot, there will be 3 additional values ASPA_AVOIN, ASPA_KÄSITTELYSSÄ
and ASPA_VALMIS, which are directly auto-generated from the public works department
system states.

5.7.3 Service Objects (service_object_type,service_object_id,
service_object_base)

Service request may contain reference to a service object. Service object is typically an
item from a data source like a city’s point-of-interest database . Service object can be, for
example, a specific bus stop, toilet, museum, streetlight, which the feedback sent on the
service request is about.

In order to separate different data sources, service_object_type must be present is if
service object is defined, For example in Helsinki, it is possible to use City of Helsinki
service map as the data source for the service objects, which is identified by
service_object_type=http://www.hel.fi/servicemap/v2/unit/. Other service object types
identified so far are “citysdk.eu/v1/poi” and “citysdk.eu/v1/mobility”, which refer to WP4
Mobility or WP4 Tourism specifications.

The actual service object is identified by using service_object_id parameter. It must be
always present if service object is defined. For example in case of Helsinki Service map,
service_object_id=10844 identifies the public toilet in Esplanade park.

It is recommended that a base URL of the endpoint is included into the service object
definition. The service_object_base parameter is used for that. In case of CitySDK
interfaces, it is possible that applications implementing WP4 Mobility or WP4 Tourism

 40

specifications can fetch service object data from any CitySDK endpoint typically by
appending service_object_id to service_object_base. For example, if
service_object_base=http://api.citysdk.amsterdam.nl/cdk-node/ and
service_object_id=cdk-n881955629 then URL address for fetching data is
http://api.citysdk.amsterdam.nl/cdk-node/ cdk-n881955629.

Examples of usage

Public toilet in Helsinki service map:

• service_object_id=10844
• service_object_type=http://www.hel.fi/servicemap/v2/unit/

Point of interest as defined in Tourism Work Package:

• service_object_type=citysdk.eu/v1/poi
• service_object_base=http://www.lisboa.pt/citysdk_poi/
• service_object_id=1234

5.7.4 Language support (locale)

Language support is implemented by having an optional local – parameter into every
request message. Supported languages are listed in the Service Discovery.

The locale –parameter may affect the language used inside following parameters:

API Method Parameters which content can change depending on language
GET Service List service_name

description
keywords
group

GET Service Definition data_description
description
name

POST Service Request service_notice
Get Service Requests status_notes

service_name
agency_responsible
service_notice
address

Get Service Request status_notes
service_name
agency_responsible
service_notice
address

Errors – error message Description

5.7.5 New query options

 41

Quering based on time (updated_after,updated_before)
Allows one to search for requests which have an updated_datetime between the
updated_after time and the updated_before time. This is useful for downloading a change
set that includes changes to older requests or to just query very recent changes.

These parameters are already included in the draft Open311 v2.1.

Limiting query results (page,page_size)
These parameters allows to page through the results. Use in combination with page_size
and with multiple calls to download all data in a logical set of records.

These parameters are already in use in some cities.

Quering based on location (lat, long, radius)
Allows one to search for requests submitted on certain area.

5.7.6 Media handling

Allows defining a standard way to send media to API endpoint.

This is already defined in the draft Open311 v2.1 and used in some cities.

5.7.7 Other changes to Open311 v2 specification

Location
It is possible to send service request without location. Developer should read city’s
specifications for guidance on, which service request types allows request without location.
If there is no mention then standard Open311 v2 operation is assumed, i.e. location is
mandatory.
5.8 Examples on API messages and usage

5.8.1 Submitting a service request with an image

POST /dev/v2/requests.json
Host: api.hel.fi
Content-Type: multipart/form-data; boundary=AaB03x

--AaB03x
Content-Disposition: form-data; name="api_key"

xyz
--AaB03x
Content-Disposition: form-data; name="service_code "

001
--AaB03x
Content-Disposition: form-data; name="lat"

60.168569
--AaB03x
Content-Disposition: form-data; name="lon"

 42

24.950627
--AaB03x
Content-Disposition: form-data; name="description"

There is a huge pothole
--AaB03x
Content-Disposition: form-data; name="first_name "

John
--AaB03x
Content-Disposition: form-data; name="last_name "

Smith
--AaB03x
Content-Disposition: form-data; name="phone"

0503391387
--AaB03x
Content-Disposition: form-data; name="email"

john.smith@gmail.com
--AaB03x
Content-Disposition: file; filename="image.gif"
Content-Type: image/gif
Content-Transfer-Encoding: binary

...contents of image.gif...
--AaB03x

Response

[
 {
 "service_request_id":293944,
 "service_notice":"Thank you for the feedback!",
 "account_id":null
 }
]

5.8.2 Service request with image and attributes

POST /dev/v2/requests.json
Host: api.hel.fi
Content-Type: multipart/form-data; boundary=AaB03x

--AaB03x
Content-Disposition: form-data; name="api_key"

xyz
--AaB03x
Content-Disposition: form-data; name="service_code "

003
--AaB03x
Content-Disposition: form-data; name="attribute[service_request_type]"

THANK

 43

--AaB03x
Content-Disposition: form-data; name="attribute[title]"

Thanks you for fabulous day!
--AaB03x
Content-Disposition: form-data; name="description"

Thank you for organizing a fabulous great Helsinki day on 12.6.!
--AaB03x
Content-Disposition: form-data; name="first_name"

Joan
--AaB03x
Content-Disposition: form-data; name="last_name"

Smith
--AaB03x
Content-Disposition: form-data; name="phone"

0503391387
--AaB03x
Content-Disposition: form-data; name="email"

joan.smith@gmail.com
--AaB03x
Content-Disposition: file; filename="image.gif"
Content-Type: image/gif
Content-Transfer-Encoding: binary

...contents of image.gif...
--AaB03x

Response

[
 {
 "service_request_id":293944,
 "service_notice":"Thanks for your feedback!"
 }
]

5.8.3 Quering service request with extensions

https://api.city.gov/dev/v2/requests/638344.xml?extensions=true

<?xml version="1.0" encoding="utf-8"?>
<service_requests>
 <request>
 <service_request_id>638344</service_request_id>
 <status>open</status>
 <status_notes></status_notes>
 <service_name>Public toilets</service_name>
 <service_code>001</service_code>
 <description>Toilet is a mess.</description>
 <agency_responsible></agency_responsible>
 <service_notice></service_notice>

 44

 <requested_datetime>2010-04-14T06:37:38-08:00</requested_datetime>
 <updated_datetime>2010-04-14T06:37:38-08:00</updated_datetime>
 <expected_datetime>2010-04-15T06:37:38-08:00</expected_datetime>
 <address>8TH AVE and JUDAH ST</address>
 <zipcode>94122</zipcode>
 <lat>60.168569</lat>
 <long>24.950627</long>
 <media_url>http://images.hel.fi/requests/media/638344.jpg</media_url>
 <extended_attributes>
 <service_object_type>http://www.hel.fi/servicemap/v2 </service_object_type>
 <service_object_id>10844</service_object_id>
 <detailed_status>IN_PROCESS,PUBLIC_WORKS_OPEN</detailed_status>
 </extended_attributes>
 </request>
</service_requests>

5.8.4 Listing service definition with language set to Finnish language

This is shows example of how the Service Definition and language option affects the UI of
the application. Image below shows the UI if Service List and Service Definition examples
were used.

Image 2. Application UI

If the Service Definition example is loaded with language option set to Finnish the
multivalue list option view would like.

 45

Image 3. UI with Finnish service definition

.

The Service Definition message with Finnish language option is below.

https://api.hel.fi/services/003.xml?locale=fi_FI

<service_definition>
 <service_code>003</service_code>
 <attributes>
 <attribute>
 <variable>true</variable>
 <code>service_request_type</code>
 <datatype>singlevaluelist</datatype>
 <required>true</required>
 <datatype_description></datatype_description>
 <order>1</order>
 <description>Palautteen tyyppi</description>
 <values>
 <value>
 <key>IDEA</key>
 <name>Idea</name>
 </value>
 <value>
 <key>THANK</key>
 <name>Kiitos</name>
 </value>
 <value>
 <key>BLAME</key>
 <name>Moite</name>
 </value>
 <value>
 <key>QUESTION</key>
 <name>Kysymys</name>

 46

 </value>
 <value>
 <key>OTHER</key>
 <name>Muu</name>
 </value>

 </values>
 </attribute>
 <attribute>
 <variable>true</variable>
 <code>title</code>
 <datatype>string</datatype>
 <required>false</required>
 <datatype_description></datatype_description>
 <order>2</order>
 <description>Palautteen otsikko</description>
 </attribute>
 </attributes>
</service_definition>

 47

6 Smart Participation Lead Pilot

Smart Participation Lead Pilot in Helsinki demonstrates the possibility of innovative public-
private collaboration where the technical feedback mechanisms are automated end-to-end,
and the citizens interact with the city through a private high-reach news/media internet
service – the site they already are visiting several times a day.

Smart Participation service will be piloted on local news site Metro.fi but other developers
and businesses are welcome to utilize the interface as well.

 48

6.1 Metro.fi

Figure 5: Wireframe for the Lead Pilot service

The Lead Pilot’s service in Metro.fi provides a broad view on the reports submitted from the
capital area of Helsinki. The reports made by fellow citizens are shown on the map and the
colours indicate the status of the report. The users can check existing reports with one
glimpse and get further information on interesting reports with just one click on the map.
The issue submission form of the new service is compliant with the interface specification.

City's activity on handling the reports is also one of the first things the user will see when
entering the service (the right hand box on the map). This is how the user can get a good
view on how the city is managing the reports.

 49

Figure 6. Users can submit their report and
follow its status

We will provide articles and videos explaining and showing how the issues get actually
fixed. Metro's FixMyStreet service has utilized user generated content by writing
interviewing local people as well as city's administrative people handling the actual issues.
this provides a rewarding private-public-media collaboration and enhances the citys policy
making transparency.

 50

6.2 City of Helsinki’s centralized feedback management system
City of Helsinki has been developing a centralized feedback system, which is planned to be
taken into use by all city’s departments. This will happen in phases starting from the
beginning of 2013.

Image 4. Work list view of the centralized feedback system

The feedback given by citizens via web pages, phone calls or e-mails is all stored in the
centralized feedback system. From there, feedback handlers will answer or forward receive
feedback to the correct city's personnel for answering.

Image 5. View of one feedback from the work list

Ulkoinen(sovellus:(Metro.fi(30.08.2012(
14:36

 51

As it will be used by all city’s departments, it can handle different kinds of feedback like
questions, positive or negative feedback, ideas and any other kinds of feedback coming
from citizens or other external sources. It will be the first time that City of Helsinki can have
a comprehensive view on the feedback it receives from the citizens.

The CitySDK Smart Participation interface is implemented into the new centralized
feedback system, where all service requests sent via the interface will arrive. From there,
they are handled as any other feedback.

6.3 City of Helsinki’s Public Works department

Even with the new centralized feedback management system Helsinki’s Public Works
department will keep its own case management system called Aspa. It is used only for
reported issues, which require action from Public Works department. For example, if there
is a pothole, which needs fixing, the issue is stored in the Aspa system. Aspa system
contains information on on responsible personnel who needs to take action on fixing
different issues. Aspa is used by the actual people who will organize the actual repair work.

Image 6. Aspa case management system

Part of the Helsinki WP3 pilot is to integrate these systems in such a way that when citizens
send service requests via the CitySDK interface into the city’s centralized feedback system,
it can be forwarded to the Public Works department’s Aspa system. And also if issues were
first reported into Aspa they are forwarded to the centralized feedback system and are also

 52

visible to the citizens via the CitySDK Smart Participation interface. The status of each
issue report is kept synchronized in the central feedback system.

Image 7. Centralized feedback system shows status of the issue in Aspa

Aspa Vastattu

Ulkoinen(sovellus:(Metro.fi(30.08.2012(
14:36

Aspa,(Rakennusvirasto(30.08.2012(15:36

Aspa,(Rakennusvirasto(30.08.2012(16:36

Käsitelty((Valmis(Aspassa)

 53

6.4 Developer engagement in the Lead Pilot
The interface specification, API keys and instructions for using the interface will be provided
to the developer community as soon as the interface is implemented and tested. This
information will be provided through CitySDK Developer pages as well.7 Additionally, all the
earlier developer and SME contacts Lead Pilot has made will be informed on the progress.
Local Facebook page will be used in promoting the Smart Participation Lead Pilot
components in Finland.

7 http://www.citysdk.eu/developers/

 54

7 Conclusions

Smart Participation SDK component, the interface, has been specified through the
collaborative requirement definition process. The Lead Pilot will be using this interface
starting from the launch of the pilot in January 2013.

After the launch of the Lead Pilot in the beginning of 2013, pilot and apps utilizing the
interface will be promoted locally. Developer engagement and national efforts for
harmonized issue reporting interfaces will be continued.

During the summer 2013, the Smart Participation concept will be expanded to Amsterdam,
Barcelona, Lamia, Lisbon, Manchester and Rome. These partner cities will enable the two-
way issue-reporting channel for their citizens and an opportunity to develop the interface
according to their special needs. The work on the replication pilots has already started in
many cities, as some already have existing feedback handling systems, apps or even
national efforts to harmonize the interfaces, like in the Netherlands.

 8

8 Screenshots from Lamia’s, Barcelona’s and
Amsterdam’s existing services

