

DELIVERABLE

Project Acronym: CitySDK

Grant Agreement number: 297220

Project Title: Smart City Service Development Kit and its Application Pilots

D2.1 CitySDK for Pilots, including Documentation (M12)

Revision: Final. Since D3.1, D4.1 and D5.1 are crucial elements in this deliverable, this
document contains many references to sections in these subdeliverables.

Authors:

 dr. Geert Monsieur (Tilburg University)
 prof. dr. Willem-Jan Van den Heuvel (Tilburg University)

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

P Public

C Confidential, only for members of the consortium and the Commission Services x

REVISION HISTORY AND STATEMENT OF ORIGINALITY

 Revision History

Revision Date Author Organisation Description

0.1 3/12/2012 Geert

Monsieur

Tilburg

University

Draft version, more details on

subdeliverables (D3.1, D4.1 and D5.1) need

to be added in a next revision.

1 27/12/2012 Geert

Monsieur

Tilburg

University

Final deliverable.

Statement of originality:

This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published
material and of the work of others has been made through appropriate
citation, quotation or both.

Table of Contents

1 Introduction: CitySDK from a technical perspective ..4

1.1 CitySDK ecosystem ..4

1.2 The need for CitySDK services...4

2 Methodology to design & develop CitySDK services ...5

3 CitySDK requirements ...7

4 CitySDK service design ...8

4.1 Domain models ...8

4.1.1 Domain model Participation ...9

4.1.2 Domain model Mobility ... 10

4.1.3 Domain model Tourism .. 11

4.2 Standards ... 11

5 CitySDK technology landscape .. 12

6 Next steps .. 12

1 Introduction: CitySDK from a technical perspective

1.1 CitySDK ecosystem

One of the most important goals in CitySDK is to create a sort of ecosystem in which the
work of an app developer is facilitated by having unified and open city interfaces available
across different cities in Europe.

First of all, this means that it should be relatively easy for developers to make use of data
coming from multiple European cities (e.g. touristic information, bus schedules, etc.),
because in such an ecosystem data access is open and unified.

Additionally, an ecosystem should also create an environment in which innovation among
app developers or companies making apps is stimulated. Ideally, this means that by
exploiting the CitySDK ecosystem app developers should be able to build new apps that
fulfill current and future needs of end-users or citizens in Europe.

In CitySDK the ecosystem being established is evaluated by demonstrating the potential
value of CitySDK unified interfaces through different pilots. In these pilots concrete apps are
developed based on the outcome of CitySDK and this should not only show the potential of
the unified interfaces, but it also functions as a way to continuously evaluate and redesign
the CitySDK interfaces.

1.2 The need for CitySDK services

There is a growing number of apps available that connect to systems in an European city
(e.g. to lookup POIs). Although more cities start to provide open interfaces, it is still a
challenge to construct apps that can easily connect to multiple cities. Even slightly adapting
an app to make it work in a different city is very time-consuming. This is mainly because of
the enormous variation in the interfaces and the message formats and structures that are
used in these interfaces.

‘Open’ interfaces to sometimes legacy systems are too often not coherent between or even
within cities. Furthermore, documentation on these interfaces is often missing making it
even harder to build apps for multiple cities.

Figure 1

There is clear need for unified and open interfaces across Europe, making it significantly
easier to reuse (components of) apps in multiple European cities.

Since we also aim to create an ecosystem in which the development of innovative apps is
stimulated, it is also really important that the CitySDK interfaces constitute reusable and
valuable services. Such services are utilized as the constructs to support the development
of rapid, low-cost and easy composition of distributed applications.

This reflects a service-oriented approach to programming, based on the idea of composing
applications by discovering and invoking network-available services rather than building
new applications or by invoking available applications to accomplish some task.

Figure 2

Services are ideally building blocks (i.e. as music notes are to songs) for today's and future
app(lication)s. Essentially, a service can be considered as an interface to a (city's) system
that provides a certain function (e.g. submitting an issue in a certain location (cfr.
FixMyStreet) or data (e.g. getting a list of nearby issues). An app(lication) is typically built by
interacting with services (i.e. exchanging messages).

2 Methodology to design & develop CitySDK services

Simply providing open interfaces through the use of standard Web services technologies is
not sufficient to obtain the CitySDK ecosystem. A sound methodology is of critical
importance to avoid the pitfalls of deploying an uncontrolled maze of services and provide a
solid foundation for service enablement in an orderly fashion so that services can be
efficiently used in SOA-based smart city applications.

In the CitySDK project we choose to follow the well-adopted SOA development lifecycle
(SDLC) by Papazoglou & Van den Heuvel (2007). SDLC provides continuous refinement
using a closed loop approach that facilitates designing SOA solutions (e.g. European smart
city app) as assemblies of services in which each service assembly is a managed first class

aspect of the solution, and, hence, amenable to analysis and change. Developers can then
view an smart city app(lication) as a choreographed set of service interactions.

SDLC is organized around a service lifecycle, which includes the phases of SOA planning,
analysis & design, constructing & testing, provisioning, deployment and execution &
monitoring. Figure 3 gives a detailed view of the SDLC phases along with the main steps in
each phase. The SDLC phases are traversed in an iterative and incremental manner where
feedback is cycled to and from phases in iterative steps of refinement.

The objectives in the first deliverable of WP2 (D2.1) match to the first two phases in the
SDLC: ‘SOA planning’ and ‘analysis & design’. The others phases are about service
implementation and execution, and therefore related to the pilots in the CitySDK project.
The pilots require cities to implement CitySDK services and to compose these services into
apps. Lessons learned during these phases are taken into account when improving the
design of the CitySDK services in follow-up iterations. Improvements in the design of the
CitySDK services are documented in deliverables D2.2 and D2.3.

Figure 3 Service Development Lifecyle (SDLC)

Based on the steps in ‘SOA planning’ and ‘Analysis & design’ we see three main
elements that are important for deliverable D2.1:

(a) CitySDK requirements: Which functionalities are expected in the CitySDK services?
What type of use case scenarios need to be supported by the CitySDK services?

(b) CitySDK service design: How do we offer the expected functionalities in the CitySDK
service interfaces? Are there important standards in the domain that can be
adopted?

(c) CitySDK technology landscape: What are relevant technologies that could be used
when implementing CitySDK services?

Elements (a) and (b) are substantial parts in deliverables D3.1 (participation), D4.1
(mobility) and D5.1 (tourism). Element (c) is covered in the report ‘Identification and
analysis of cross-domain technological concerns’ (see task 2.3). In the following section we
describe these elements in more detail.

3 CitySDK requirements

More details on the CitySDK requirements, including use case scenarios, can be found in
each domain-specific deliverable (see sections 3 in D3.1, D4.1 and D5.1). This document
describes the general approach to gather and define the requirements within and across
the three domains.

To gather the CitySDK requirements we launched a WIKI website1 and published a city
requirements questionnaire. More specifically, for each domain (participation, mobility and
tourism) we created three Wiki pages (applications, services and standards) where all
participating partners were supposed to share their answers to the City Requirements
Questionnaire. By linking all Wiki pages to each other using hyperlinks (see Figure 4),
partners could easily see what other partners (in sometimes different domains) were
discussing, which resulted into to more and better input of all partners.

Figure 4 Hyperlinks used on the WIKI website reflecting the structure of the city requirements questionnaire

We briefly describe the requirements identification process. Two important aspects need to
be considered when defining the requirements.

Since CitySDK services need to support the composition of current and future smart city
app(lication)s, we first analyzed what exactly project partners are expecting to be able to
construct using the CitySDK services (i.e. which apps do they see as valuable today and in
the future?). This is important because we need to know which CitySDK functionalities are
necessary to build apps.

Secondly, we also gathered information on existing services and interfaces across
participating cities. This gives us an idea on what exactly cities can offer and which kind of
services could potentially be composed into new and innovative apps.

1
 http://citysdk.wikispaces.com/

Figure 5 Meet-in-the-middle approach

Based on these two aspects (i.e. expected apps to be composed and expected services to
be provided) we followed a so called meet-in-the-middle approach to decide on the final
requirements for the CitySDK services (see Figure 5). This means that we tried to match
the desired apps and the available services as much as possible. In case of substantial
gaps (i.e. it is very difficult to compose a certain app with existing services or there exist
services that do not have an use in app compositions) we critically discussed the need to
include the service in the CitySDK service landscape. The final requirements are based on
multiple workshops in which various stakeholders (i.e. developers, end-users/citizens,
municipalities) were involved.

Based on discussions in all domains common requirements were identified such as location
representation, security aspects and CitySDK endpoint discovery. At this stage of the
project it was not the goal to find an integrated answer to these requirements yet, but these
common elements significantly drove the technologies that we studied in the report on
‘cross-domain technological concerns’ (task 2.3) (see section 5 in this document).

4 CitySDK service design

More details on the CitySDK service design can be found in the other deliverables (D3.1
(see section 5), D4.1 (see separate document on the API) and D5.1 (see sections 4 and 6)).
In this document we motivate the use of standards and present domain models that are
based on the services designed in the other deliverables.

4.1 Domain models

The domain models presented in this subsection were created to give future developers
and consumers of CitySDK services a better understanding of each domain. Furthermore,
these domain models can be used to identify common elements across the domains (e.g.
location representation), which need to be managed in the next versions of the CitySDK
APIs. For more information on the entities that are modeled we refer to the domain-specific

deliverables (D3.1 (see section 5), D4.1 (see separate document with API description) and
D5.1 (see section 6).

4.1.1 Domain model Participation

4.1.2 Domain model Mobility

4.1.3 Domain model Tourism

4.2 Standards

As motivated in section 1 of this document this project aims to build a service-oriented
architecture for smart cities in which app development is facilitated through the composition
of services into new apps. Principles of SOA design & development guarantee that services
are self-contained and come equipped with clearly defined boundaries and interfaces to
allow for service composability. There are three fundamental SOA principles:

• Service coupling: e.g. services should not depend on specific representational or
implementation details.

• Service cohesion: the degree of the strength of functional relatedness of operations
within a service.

• Service Granularity: the scope of functionality exposed by a service. Fine-grained
services (e.g. basic data access or rudimentary operations) vs. coarse-grained
services composed from finer grained services.

It is clear that these principles are rather abstract and difficult to apply when designing
services. Therefore, we decided that it is crucial for CitySDK to study existing standards that
already tackled these challenging design problems.

When constructing an SOA not only technology standards such as XML or JSON are
important. For CitySDK in particular, it is even more important to study existing domain-
specific standards that propose service interfaces and message structures (e.g. Open311 in

the participation domain, OpenStreetMap in the mobility domain and W3C’s POI in the
Tourism domain).

Information on existing standards was gathered using the WIKI website and in each
subdeliverable there is a section discussing the standards in their domain (D3.1 (see
section 4), D4.1 (OpenStreetMap is discussed throughout the separate API document) and
D5.1 (see section 5)).

It is important to highlight standards, because of the following reasons. First, by reusing
existing standards (e.g. Open311 in the participation domain) the chance for adoption is
increased. Second, we would like to stand on the shoulders of giants, meaning that we do
not want to reinvent the wheel. Third, we aim to contribute to the existing knowledge (i.e. by
disseminating our ideas to the Open311 community). At the same time this also gives us
the opportunity to obtain feedback from experienced people in the domain. Fourth, by
reusing standards in smart city service interfaces we decrease the so called
representational coupling (Papazoglou & Van den Heuvel, 2007), because developers are
not bound to use message formats linked to a specific service implementation.

5 CitySDK technology landscape

This is documented in a separate report called ‘Identification and analysis of cross-domain
technological concerns’ (see task 2.3).

As pointed out earlier in this document, in each domain locations have a prominent role.
Hence, to make it possible to combine CitySDK services across the three domains,
locations need to be represented in an interoperable way. Therefore, the report contains a
chapter discussing different techniques for geographic encoding and their formats (e.g.
GeoJSON, GML/KML). Since one of the goals of CitySDK is to stimulate innovation through
an ecosystem in which CitySDK services are accessed and combined into new apps, it is
essential to discover useful CitySDK services. For that reason the report also studies
different API endpoint discovery mechanisms (e.g. UDDI, GeoWeb DNS).

Additionally, several other technologies that are relevant when implementing CitySDK
services or building apps (e.g. CitySDK pilots) are discussed in the report:

 Application authentication/authorization techniques (e.g. STORK)

 Different mapping services (Google, Bing, OpenStreetMap)

 Indoor positioning (e.g. WiFi, RFID, Bluetooth, QR)

 Mobile broadband technologies (e.g. OpenWisp)

 Application repositories (e.g. Google Play, App store, Handango or MobiHand)

6 Next steps

The outcome of this deliverable is the first version of the CitySDK APIs. Before starting a
second development cycle to improve the design of the CitySDK services, we need to test
and evaluate the services. This is done in two ways. First of all, cities need to implement the
CitySDK services to show that the CitySDK services are realistic and implementable.
Subsequently, app(lication)s can be developed based on these CitySDK services to prove

the value of these services. These tasks are part of the lead and replication pilots which
form the next phase in this project.

In order to support the pilots in the best way, WP2 needs to collaborate with WP6 in the
upcoming months to launch a developers website. In the first place this website functions as
a communication channel towards the developers. It is going to include all API descriptions
so that all participating partners can access it. Furthermore, during the pilots this website
should publish lessons learned and all other guidelines that are useful during app
development and/or CitySDK service implementation.

In parallel to the pilots other improvements such as dealing with locations, language
differences and endpoint discovery can be made. The report described in section 5 of this
document (cfr. task 2.3) is an important input to these improvements.

